
Bregman divergences 
a basic tool for pseudo-metrics building

for data structured by physics

Stéphane ANDRIEUX

ONERA - France

Member of the National Academy of Technologies of France

CIMPA Research School : Data Science for Engineering and Technology
Tunis 2019

5- Proper Orthogonal Decomposition (POD) 

with Bregman divergences



What is POD , what for ?
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Basically : designing a sparse representation of a function f(x,t)

Modes

Applications
Compression of data (vectors), representation of fields, identification of structures in vector fields

Construction of reduced models by (spatial) projection of the initial PDE onto span {Fi}

1,

( , ) ( , ) ( ) ( )i i

i N

f x t f x t b t t


  F

An infinity de choices !

But, the POD approach rely on :

The choice of the order of variable
The choice of a product of spaces HxV

H Hilbert space with scalar product , V vector space with a mean

The demand that the modes F are orthogonal

The meaning of “best” representation: 
mean (in V) of the norm (in H) of the residual

.,. .

2

H
f f



Equivalent approaches to the POD
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Consider the case N=1 (one mode POD)
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a) Suppose F is fixed in  the initial formulation 
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b) Using this result the initial formulation is : 
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5- POD 



One mode POD
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Consider the case N=1 (one mode POD)

5- POD 
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Stationarity conditions of the Lagrangian
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Leads to the definition of the operator
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F is the eigenvector of A

with greatest eigenvalue
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Examples of A operators

5 Bregman Divergences and  Data Metrics 5- POD 

H space of square integrable scalar fields on a domain W :

T time domain with averaging operator

R is the (space) correlation function.

H space of square integrable scalar functions on a time domain D

T space of integrable functions on a space domain W, spatial averaging operator

R is the (time) correlation function.

H space of square integrable scalar fields on a domain W :

E probabilistic space, expectation operator associated to the probability measure dp

R is the (space) correlation function
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Main results for N modes POD
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For N modes POD, same derivation 

except the supplementary condition 

of orthogonality of modes 

5- POD 
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i first greatest eigenvalues
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Existence of the eigensystem is guaranteed by the spectral theory of Hilbert-Schmidt operators 

(as A is HS)

The kernels of A are the correlation operators, they benefit from the decomposition 

The r-decomposition is exact if the operator's spectrum is zero beyond the rank r
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SVD : an alternative way for the POD in finite dimension 
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Suppose we have n snapshots of  m dimension vectors [ f ]

5- POD 
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nxm Matrix of snapshots
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 One mode POD of [ f ] 
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SVD of matrix [ F ]= UVt, 
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SVD  in practice 
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Interpretation of SVD on snapshots 

for spaces modes

5- POD 
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Compression of storage for a image nxxny

pixels when the first k modes are retained
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Quality factor 

(for N max modes computed)



Example 1: Image compression 
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Two images I1 and I2, described by a matrix M

of “gray level h(i,j) at pixel (i,j)” respectively 

200x300 and 128

5- POD 

Singular values 

I1

I2



Example 2: Patterns recognition
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Identification of energy dominant modes in a flow around a airfoil

5- POD 

Because of an energetic interpretation of the scalar product in H



I. - Bregman POD  for quadratic generating functions 
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If J is quadratic

5- POD 
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DJ defines a norm and a scalar product   (Mahalanobis distance in IRn)

POD with Bregman divergence generated by quadratic function JQ
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of self-adjoint compact operator A
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II. - POD  for -similar Bregman divergence 
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μ-similar Bregman divergences 

A Bregman divergence DJ on a domain K  IRn is μ-similar for some μ > 0 if there exists 

a nxn positive definite matrix Q such that, for each pair (e1, e2) belonging to K2
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POD with -similar Bregman divergence 
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III. - POD  with general Bregman divergence 
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POD strongly rely on scalar products and norms at various steps of derivation

2- Revisit all the steps in order to decide when substituting the scalar products and norms

with corresponding Bregman induced pseudo-*

BD do not enjoy 

the triangle inequality

No hope that we have equivalence between the two 

formulations of POD
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1- Define a pseudo-norm and pseudo-scalar product form Bregman divergence 

Define a 

pseudo-norm

Use a symmetric 

polarization formula 
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IV. - POD  with general Bregman divergence 
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POD strongly rely on scalar products and norms at various steps of derivation

1- Define a pseudo-norm and pseudo-scalar product form Bregman divergence 

2- We choose

To keep the orthogonality of the modes Fi

in H with its own scalar product
,i j ijF F 

To adopt as objective of the POD 
2

, 1

arg min, , , ( )J J
H

f ff f G
 

  

  F F F    

One mode Bregman POD



V. - POD  with general Bregman divergence 
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Bregman divergence orthogonal decomposition - BDOD

The BDOD of order N   of a function f(x,t) defined on the product HxE where H is a 

Hilbert space of functions on a spatial domain W and E a time domain, with  the scalar 

product of H and the time averaging function on E, is 

where the functions Fi are sequentially determined by the minimization problem :

and J is the convex generating function of the Bregman divergence DJ
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V. - POD  with general Bregman divergence 
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Characterization of Bregman divergence orthogonal decomposition

Using an appropriate Lagrangian
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One mode Bregman POD

Eliminating the Lagrange multiplier
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A form of eigenproblem

More work to be done !

1- Repeat sequentially for N-decomposition : Better algorithm ?

2- POD on Product space for multiphysics applications



Thanks for your attention


